Mehr Daten schneller und energiesparender verarbeiten
Big-Data-Anwendungen brauchen eine hohe Rechenleistung bei m?glichst geringem Stromverbrauch. G?ngige Computersysteme stossen bei beidem an Grenzen. Onur Mutlu forscht an L?sungen und hat dafür von Intel den 2021 Outstanding Researcher Award bekommen.
Vielleicht haben Sie schon davon geh?rt, dass Moore’s law zu einem Ende kommt. Diese empirische Beobachtung besagt, dass Computer ihre Leistungsf?higkeit etwa alle zwei Jahre verdoppeln. Alternative Ans?tze, die Computer effizienter machen, sind daher sehr gefragt. Prof. Onur Mutlu, der Hardware/Software Co-Design an der ETH Zürich erforscht, folgt dem Ansatz, Rechner und Speicher zu vereinen. Processing-in-memory (PIM) computing macht Big-Data-Applikationen wie Genom-Analyse nicht nur deutlich schneller, sondern auch viel energiesparender.
Kürzlich hat die in Grenoble ans?ssige Firma UPMEM die erste PIM-Architektur auf den Markt gebracht. Statt eines Prozessors beziehungsweise CPUs (Central processing Units), enth?lt sie DPUs (DRAM Processing Units), Speicherelemente, die auch gleich das Prozessieren der Daten übernehmen. Mutlu hat das neue System charakterisiert, analysiert und getestet und den Vergleich mit einem bisherigen State-of-the-Art-System mit CPUs gemacht. Er hat herausgefunden, dass das neue System Berechnungen bis zu 23-mal schneller und bis zu 5-mal energieeffizienter macht. Das neue System ist am interessantesten für datenintensive Applikationen - dazu z?hlen als spezifische Beispiele Genanalyse oder Wettervorhersage-Modelle. ?Nicht schlecht für die erste kommerzielle Version eines Processing-In-Memory-Systems,? sagt Mutlu, ?im Vergleich zu einem System mit Prozessor, der bereits jahrzehntelang optimiert wurde.?
Das UPMEM Processing-?In-Memory-System. (Quelle: Onur Mutlu)
Viel schneller und energieeffizienter
Mutlu und seine Mitarbeiter haben das neue System unter anderem für Applikationen in den Bereichen Datenanalyse, Datenbasen, Bioinformatik, Bild- und Videoanalyse und Neuronale Netzwerke getestet. Für alle Aufgaben, die kaum Kommunikation zwischen den einzelnen DPUs (beispielsweise Datenbanken-Anwendungen) und vorwiegend einfachere Rechenoperationen (z.B. Videoanalyse, Datenfiltern) verlangen, dürften die neuen UPMEM-Systeme interessant sein. ?Wir rechnen damit, dass diese Systeme mit ihrer Weiterentwicklung noch schneller und energiesparender und ihre Anwendungen noch vielf?ltiger werden.? bemerkt Mutlu.
"Die PIM (processing in memory) Systeme werden noch vielf?ltiger werden."Onur Mutlu
Welche Unternehmen k?nnten dieses neue System bereits nutzen? ?Energieeffizienz und Nachhaltigkeit sollten in s?mtlichen Branchen ganz oben auf der Agenda stehen,? glaubt Mutlu. ?Aber diejenigen Firmen, die bereits eine Vorstellung davon haben, wie sie die neue PIM-Hardware einsetzen, werden unmittelbar profitieren,? sagt er. ?Das heisst, wenn ihre Workloads gut zur neuen Architektur passen, verbessern sich Leistung und Energieeffizienz stark.?
Breite Anwendungen
Datenzentren k?nnten das neue PIM-?System bereits nutzen. ?Auch jedes Software-?Unternehmen sollte es in Betracht ziehen, um sich für die Zukunft fit zu machen,? sagt Mutlu. PIM ist zudem ein Substrat, das auch eingebettete Systeme wie AR/VR Brillen, Drohnen, selbstfahrende Autos u.a. viel effizienter macht. ?In diesen Gebieten t?tige Firmen sollten darüber nachdenken, wie sie von PIM in ihren Systemen profitieren k?nnten.?
"Energieeffizienz und Nachhaltigkeit sollten in s?mtlichen Branchen ganz oben auf der Agenda stehen."Onur Mutlu
Mutlu führt Projekte mit mehreren Hard- und Software-Firmen durch, unter anderen mit Intel.
Intel lancierten die Outstanding Researcher Awards für Forscher, die den Bereich Computing innovativ voranbringen und mit Intel kollaborieren. Mutlu geh?rt 2021 zu den Preistr?gern - zusammen mit 16 Kollegen aus der ganzen Welt.
PIM-Systeme erm?glichen einen fundamental effizienteren Ansatz für Computing, im Gegensatz zu derzeitigen Standardsystemen, in denen sich alles um den Prozessor aus CPUs dreht und sich die Speichereinheiten weit weg davon befinden. In solchen Systemen limitiert die Datenbewegung zwischen Prozessor und Speicher neuerdings die Schnelligkeit der Datenverarbeitung, obwohl der Prozessor selbst h?chst leistungsf?hig ist. Es braucht am meisten Energie, die Daten zu bewegen - mehr als für die Berechnungen. ?Ein einziger Zugriff auf den Arbeitsspeicher etwa verbraucht 100- bis 1000-mal mehr Energie als eine komplexe Addition,? sagt Mutlu.
Zusammenarbeit mit der Industrie
Mutlu k?nnte sich Projekte wie das Testen und Entwickeln von Applikationen mithilfe des UPMEM PIM-Systems gemeinsam mit zus?tzlichen Firmen oder Software-Entwicklern vorstellen. Er ist interessiert daran, mit Firmen zusammenzuarbeiten, die ihr Computing fundamental effizient machen und dadurch eine Menge Energie sparen m?chten. ?Das PIM-Paradigma hat zudem h?chst günstige Eigenschaften bezüglich Sicherheit,? fügt er hinzu. Für Firmen, denen die Sicherheit ihrer Daten am Herzen liegt, k?nnte die Gruppe von Mutlu untersuchen, wie sicher PIM Rechner sind.
Professor Onur Mutlu
Kontakt/Links:
SAFARI Research Group, Professor Onur Mutlu
Publikation:
Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu:
Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware
Sind Sie interessiert an weiteren spannenden "News for Industry" Storys?
Abonnieren Sie unseren Newsletter
externe Seite Folgen Sie uns auf LinkedIn
Suchen Sie Forschungspartner an der ETH Zürich?
Kontaktieren Sie ETH Industry Relations